Tail Exponent Estimation via Broadband Log Density-Quantile Regression

نویسندگان

  • Scott Holan
  • Tucker McElroy
چکیده

Heavy tail probability distributions are important in many scientific disciplines such as hydrology, geology, and physics and therefore feature heavily in statistical practice. Rather than specifying a family of heavy-tailed distributions for a given application, it is more common to use a nonparametric approach, where the distributions are classified according to the tail behavior. Through the use of the logarithm of Parzen’s density-quantile function, this work proposes a consistent, flexible estimator of the tail exponent. The approach we develop is based on a Fourier series estimator and allows for separate estimates of the left and right tail exponents. The theoretical properties for the tail exponent estimator are determined, and we also provide some results of independent interest that may be used to establish weak convergence of stochastic processes. We assess the practical performance of the method by exploring its finite sample properties in simulation studies. The overall performance is competitive with classical tail index estimators, and, in contrast with these, our method obtains somewhat better results in the case of lighter heavy-tailed distributions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simultaneous Tail Index Estimation

• The estimation of the extreme-value index γ based on a sample of independent and identically distributed random variables has received considerable attention in the extreme-value literature. However, the problem of combining data from several groups is hardly studied. In this paper we discuss the simultaneous estimation of tail indices when data on several independent data groups are availabl...

متن کامل

The Second-order Bias and MSE of Quantile Estimators

The finite sample theory using higher order asymptotics provides better approximations of the bias and mean squared error (MSE) for a class of estimators. However, no finite sample theory result is available for the quantile regression and the literature on the quantile regression has been entirely on the first-order asymptotic theory. This paper develops new analytical results on the second-or...

متن کامل

RANK−1/2: A SIMPLE WAY TO IMPROVE THE OLS ESTIMATION OF TAIL EXPONENTS∗ Xavier Gabaix Stern School of Business, New York University, and NBER

Despite the availability of more sophisticated methods, a popular way to estimate a Pareto exponent is still to run an OLS regression: log (Rank) = a − b log (Size), and take b as an estimate of the Pareto exponent. The reason for this popularity is arguably the simplicity and robustness of this method. Unfortunately, this procedure is strongly biased in small samples. We provide a simple pract...

متن کامل

Hazard Estimation with Flexible Tails

Polynomial splines are used to estimate the log-hazard function based on possibly censored, positive data. Two additional log terms are incorporated into the fitted model for the log-hazard function to allow for greater flexibility in the extreme tails. A fully automatic procedure involving the maximum likelihood method, stepwise knot addition, stepwise knot deletion and BIC is used to select t...

متن کامل

Optimally Combined Estimation for Tail Quantile Regression

Quantile regression offers a convenient tool to access the relationship between a response and covariates in a comprehensive way and it is appealing especially in applications where interests are on the tails of the response distribution. However, due to data sparsity, the finite sample estimation at tail quantiles often suffers from high variability. To improve the tail estimation efficiency, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009